Low-Cost Pliable Materials Transform Glove Into Sign-to-Text Machine

Photo: University of California San Diego

Researchers have made a low-cost smart glove that can translate the American Sign Language alphabet into text and send the messages via Bluetooth to a smartphone or computer. The glove can also be used to control a virtual hand.

While it could aid the deaf community, its developers say the smart glove could prove really valuable for virtual and augmented reality, remote surgery, and defense uses like controlling bomb-diffusing robots.

This isn’t the first gesture-tracking glove. There are companies pursuing similar devices that recognize gestures for computer control, à la the 2002 film Minority Report. Some researchers have also specifically developed gloves that convert sign language into text or audible speech.

What’s different about the new glove is its use of extremely low-cost, pliable materials, says developer Darren Lipomi, a nanoengineering professor at the University of California, San Diego. The total cost of the components in the system reported in the journal PLOS ONE cost less than US $100, Lipomi says. And unlike other gesture-recognizing gloves, which use MEMS sensors made of brittle materials, the soft stretchable materials in Lipomi’s glove should make it more robust.

The key components of the new glove are flexible strain sensors made of a rubbery polymer. Lipomi and his team make the sensors by cutting narrow strips from a super-thin film of the polymer and coating them with conductive carbon paint.

Then they use a stretchy glue to attach nine sensors on the knuckles of an athletic leather glove, two on each finger and one on the thumb. Thin, stainless steel threads connect each sensor to a circuit board attached at the wrist. The board also has an accelerometer and a Bluetooth transmitter.

When the wearer bends their fingers, the sensors stretch and the electrical resistance across them goes up. Based on these resistance signals, the circuit assigns a digital bit to each knuckle, 0 for relaxed and 1 for bent. This creates a nine-bit code for each hand gesture of the ASL alphabet. So if all fingers are straight, the code reads 000000000; for a fist it would be 111111111.

To distinguish between ASL letters that generate the same code, the researchers incorporated an accelerometer and pressure sensors on the glove. The letters D and Z, for instance, have the same gesture but the hand zigzags for Z while it remains still for D. In U and V, meanwhile, two fingers are held together and apart respectively, which the pressure sensor detects.

In tests, the glove could translate all 26 letters of the American Sign Language alphabet into text. The research team also used the glove to control a virtual hand to sign the ASL letters.

The next version of the glove will incorporate new materials that generate a tactile response so that wearers can feel what they’re touching in virtual reality. Today’s haptic devices simulate the sense of touch by applying forces and vibrations to the user. Lipomi and his students plan to convey a much broader range of signals. “We’re synthesizing materials that can be used to stimulate everything from pressure and temperature to stickiness and sliminess,” he says.

Slug-Inspired Glue Patches Beating Hearts

The adhesive, described today (July 27) in a new study in the journal Science, sticks to wet surfaces, including the surface of a beating heart. It isn’t toxic to cells, which gives it an advantage over many surgical glues. It’s not available in operating rooms just yet — its developers say that could take years — but it could potentially be approved much more quickly for applications such as closing skin wounds.

The slug-inspired glue is “very stretchy and very tough,” said Jianyu Li, a postdoctoral researcher at Harvard University’s Wyss Institute for Biologically Inspired Engineering and the lead author of the study. Li and his colleagues applied the adhesive to a blood-soaked, beating pig heart and found that it worked better than any other surgical glue on the market.

The inspiration for the glue came from Arion subfuscus, a large and slimy species of slug found in North America and western Europe. These slugs excrete a sticky, yellow-orange slime that adheres well to wet surfaces.

That characteristic intrigued Li and his colleagues, and they set to work making an artificial version of the slime. The key, Li told Live Science, is that the slime is made up of long, straight chains of molecules called polymers, which are also bound to each other — a phenomenon called cross-linking. Cross-linking makes materials strong, but the slug slime has the added advantage of having two types of cross-link bonds. Some were covalent bonds, which means they hold molecules together by sharing electrons. Others were ionic bonds, meaning one molecule hands over its electrons to another. These “hybridized” cross-links make the slug mucusboth tough and stretchy, Li said.

The team mimicked this structure using artificial polymers layered onto what they called a “dissipative matrix.” The polymers provide the sticking power, Li explained, while the dissipative-matrix layer acts like a shock absorber: It can stretch and deform without rupturing.

To test the glue, the researchers applied it to pig skin, cartilage, arteries, liver tissue and hearts — including hearts that were inflated with water or air and covered in blood. The material proved extremely stretchable, expanding 14 times its original length without ever breaking loose from the liver tissue. When used to patch a hole in a pig heart, the adhesive maintained its seal even when it was stretched to twice its original length tens of thousands of times, at pressures exceeding normal human blood pressure.

The researchers even applied the adhesive to the beating heart of a real pig and found that the adhesion to the dancing, bloody surface was about eight times as strong as the adhesion of any commercially available surgical glue.

The glue was also tested in a living rat: The researchers simulated an emergency surgery by slicing the rats’ liver tissue and then patching the wound with either the glue or a standard blood-staunching product called Surgiflo. They found that the new adhesive was as good at stopping the blood flow as the standard glue; the rats treated with the new glue experienced no additional hemorrhaging up to two weeks after the surgery. The Surgiflo-treated rats, however, sometimes suffered from tissue death and scar tissue, the researchers reported. The rats treated with the slime-inspired glue did not experience these side effects.

Whether the new glue makes it to the operating room depends on much more extensive clinical testing, Li said, but the adhesive could make its debut as a new method of dressing external wounds on a shorter timeline than that.

“We have a company working on trying to push our material to clinical applications, and we have a patent pending,” Li said.

Laurene Jobs is buying The Atlantic magazine

Laurene Powell Jobs, widow of Apple founder Steve Jobs, will soon co-own The Atlantic magazine.

Chairman and current owner of Atlantic Media David G. Bradley announced this morning that he will be selling the majority of the magazine to Emerson Collective — the social justice organization led by Jobs.

Bradley, who will keep a small portion of the company, told The Atlantic that Jobs stood out on his list of over 600 potential investors, and was the only person the company made an offer to. The price of the sale is unknown at this time.

The shift to digital media has taken a toll on the magazine, according to the Washington post, and over the past decade the company has lost more than $100 million. But Bradley says, “against the odds, The Atlantic is still prospering.”

“While I will stay at the helm some years, the most consequential decision of my career now is behind me: Who next will take stewardship of this 160-year-old national treasure? To me, the answer, in the form of Laurene, feels incomparably right,” Bradley told The Atlantic.

Jobs’ foray into the journalism industry follows a recent trend among tech leaders. In 2012, Facebook co-founder Chris Hughes bought a portion of the New Republic, and Amazon CEO and co-founder Jeff Bezos purchased the Washington Post back in 2013.